Cholinesterase affects dynamic transduction properties from vagal stimulation to heart rate.
نویسندگان
چکیده
Recent investigations in our laboratory using a Gaussian white noise technique showed that the transfer function representing the dynamic properties of transduction from vagus nerve activity to heart rate had characteristics of a first-order low-pass filter. However, the physiological determinants of those characteristics remain to be elucidated. In this study, we stimulated the vagus nerve according to a Gaussian white noise pattern to estimate the transfer function from vagal stimulation to the heart rate response in anesthetized rabbits and examined how changes in acetylcholine kinetics affected the transfer function. We found that although increases in the mean frequency of vagal stimulation from 5 to 10 Hz did not change the characteristics of the transfer function, administration of neostigmine (30 μg ⋅ kg-1 ⋅ h-1iv), a cholinesterase inhibitor, increased the dynamic gain from 8.19 ± 3.66 to 11.7 ± 4.88 beats ⋅ min-1 ⋅ Hz-1( P < 0.05), decreased the corner frequency from 0.12 ± 0.05 to 0.04 ± 0.01 Hz ( P < 0.01), and increased the lag time from 0.17 ± 0.12 to 0.27 ± 0.08 s ( P < 0.05). These results suggest that the rate of acetylcholine degradation at the neuroeffector junction, rather than the amount of available acetylcholine, plays a key role in determining the dynamic properties of transduction from vagus nerve activity to heart rate.
منابع مشابه
Effects of sympathetic tone on vagally induced phasic changes in heart rate and atrioventricular node conduction in the anesthetized dog.
We examined the effects of stellate ganglia stimulation on the phase-dependent chronotropic and dromotropic responses to brief vagal bursts in open-chest anesthetized dogs. Stellate stimulation affected the phasic vagal effects on heart rate by shortening the latent period, shifting the phase at which maximum decrease in heart rate occurred to earlier phases, and reducing the maximum decrease i...
متن کاملVagal modulation of the rate-dependent properties of the atrioventricular node.
Vagal effects on atrioventricular (AV) nodal conduction are accentuated by increases in heart rate. To establish the mechanism of these rate-dependent negative dromotropic actions, we studied the properties governing AV nodal adaptation to changes in heart rate in chloralose-anesthetized dogs in the absence and presence of bilateral cervical vagal nerve stimulation (20 Hz, 0.2 msec). Stimulatio...
متن کاملCardiac sympathetic nerve stimulation does not attenuate dynamic vagal control of heart rate via alpha-adrenergic mechanism.
Complex sympathovagal interactions govern heart rate (HR). Activation of the postjunctional beta-adrenergic receptors on the sinus nodal cells augments the HR response to vagal stimulation, whereas exogenous activation of the presynaptic alpha-adrenergic receptors on the vagal nerve terminals attenuates vagal control of HR. Whether the alpha-adrenergic mechanism associated with cardiac postgang...
متن کاملMuscarinic potassium channels augment dynamic and static heart rate responses to vagal stimulation.
Vagal control of heart rate (HR) is mediated by direct and indirect actions of ACh. Direct action of ACh activates the muscarinic K(+) (K(ACh)) channels, whereas indirect action inhibits adenylyl cyclase. The role of the K(ACh) channels in the overall picture of vagal HR control remains to be elucidated. We examined the role of the K(ACh) channels in the transfer characteristics of the HR respo...
متن کاملHigh plasma norepinephrine attenuates the dynamic heart rate response to vagal stimulation.
To better understand the pathophysiological significance of high plasma norepinephrine (NE) concentration in regulating heart rate (HR), we examined the interactions between high plasma NE and dynamic vagal control of HR. In anesthetized rabbits with sinoaortic denervation and vagotomy, using a binary white noise sequence (0-10 Hz) for 10 min, we stimulated the right vagus and estimated the tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 275 2 شماره
صفحات -
تاریخ انتشار 1998